
ETMS System Design Document
Version 6.0

29–1

Section 29

Geographical Data

Overview

Geographical Data in the ETMS is concerned with the layout of the airspace that aircraft use.
It is not concerned with city boundaries, or mountain ranges, or river systems. Some aspects
of Geographical Data include:

• Airports - since aircraft tend to take off from and land at airports.

• Fixes - Navigational aids (many are radio beacons) used by pilots to
determine positions while in the air.

• Federal Airways - Jet (high altitude) and Victor (low altitude) routes
establish standard paths that aircraft can follow through the airspace.

• SIDS and STARS - standard departure and arrival routes from major
airports.

• ARTCCs - the airspace over the Continental US (CONUS) is divided into 20
large areas of responsibility (for air traffic control purposes). These 20
areas are known as Air Route Traffic Control Centers (ARTCCs). Canadian
Flight Information Regions (FIRs) are analogous to ARTCCs.

• Sectors - each ARTCC divides its airspace into smaller three-dimensional
chunks of air called sectors (typically one or more Air Traffic Controllers
will be responsible for each of these sectors).

ETMS collects data about these airspace elements from a variety of sources, then processes it
down into a few files (collectively known as the griddb) used by other ETMS processes that
need this geographic data. The process of collecting the raw data and distilling it down to the
griddb files repeats every 56 days. The 56-day update cycle matches the dates when the
National Ocean and Atmosphic Administration (NOAA) releases updates to the operational
airspace configuration.

ETMS System Design Document
Version 6.0

29–2

The main output - the griddb - is a set of related record-structure files that divide the section
of the world covered by the griddb (essentially the northern half of the western hemisphere)
into 5 NM by 5 NM cells. Each cell contains lists of the airspace elements within its
boundaries. In a very simplistic use, the ETMS processes can use the griddb to find which
gridcells an aircraft's departure and arrival airports are in, then find which gridcells lie in a
direct path between the departure and arrival airports, then check the connecting cells to see
which fixes, sectors, and routes the aircraft will be moving over or through during its flight.

Processing

The data to produce a particular ETMS geographic database update comes from several
sources:

• Media received from the National Flight Data Center (NFDC). These tapes
contain data about airports, runways, fixes, and Special Use Airspaces
(SUAs: military training areas, etc.)

• Media received from the National Ocean and Atmospheric Administration
(NOAA)/National Ocean Service (NOS). These tapes contain information
about Federal Airways and Military Training Routes (MTRs).

• Media received from each ARTCC (Aces tapes). These contain data about
the sectorization of the ARTCCs airspace.

• Data files kept at foreign locations. Data about airports, airways, sectors,
etc., that are located outside the boundaries of US airspace is kept at
specific locations in the country that is responsible for the airspace (Canada
is the only current one, London will be providing data soon). ETMS
collects these files electronically for each update to make sure it has the
latest data for foreign airspaces.

• Static files kept at the ETMS hubsite. There are many data files that are
maintained at the hubsite that contain data not readily available from other
sources (a file listing arrival fixes for major airports is an example). These
files are updated manually by specific request.

• Sector configuration files kept at the ARTCCs specifying how sectors in
their airspace should be displayed on the TSD.

ETMS System Design Document
Version 6.0

29–3

• The processing of the Geographical Data is a two-phase process. The first
phase involves collecting all the necessary data, then ensuring it is all in the
appropriate format (all output of this phase is in the form of ASCII text
files). A quick breakdown of this first phase might look like this:

(1) Collect the data media from NOS/NFDC and the ARTCCs.

(2) Run various processes to read the data from the tapes and load it into various
files in a specific directory structure.

(3) Run other processes that manipulate the files read from the tapes and generate
ASCII files in standardized formats that contain the data needed later by ETMS.

(4) Collect (electronically) data files from foreign sources (they should already use
the standardized formats).

(5) Collect sector configuration files from the ARTCCs.

(6) Do any manual edits to static data files as requested by ATCSCC.

Once this first phase of data collection and formatting (known informally as pre-grid) is
completed, the second phase (the grid build) can be started. This second phase consists of
running other programs and scripts that eventually generate the griddb files used by other
ETMS processes.

The output of the grid build consists of:

• The griddb (grid database), which is essentially a directory structure of
inter-related record structure files (used primarily for route processing by
the Parser process).

• A few files used by other processes (FDB, TDB) to map geographic
entities (BOS, LGA, J182, etc...) to numerical indexes used inside the
griddb (or visa-versa). These are known as elementname and
elementpair files.

• A few ASCII files used other places in ETMS mostly specifying what
names are known in the griddb.

• ASCII files of geographic names and locations, used to produce files used
by the TSD process.

Figure 29-1 is a data flow diagram for ETMS geographic data processing.

ETMS System Design Document
Version 6.0

29–4

Sector Config
F i les

Static
Data F i les

F o r m a t t e d
Data F i les

Fo re ign Da ta
F i les

E l e m e n t n a m e
E lemen tpa i r

F i les

Misc Ou tpu t
F i les

Gr iddb
Reco rd F i l es

Gr id P rocess ing

P r e -Gr id

N O A A T a p e sNFDC Med ia A C E S T a p e s

Figure 29 -1 . E T M S G e o g r a p h i c a l D a t a P r o c e s s i n g

Figure 29-1. ETMS Geographical Data Processing

29.1 Data Tape Processing

A variety of magnetic media provide the ETMS with data concerning the positions and
configurations of airways, Special Use Areas (SUAs), sectors, airports, navigational aids
(NAVAIDs), fixes, and sectors. Two general steps implement the conversion of tape data to
static data files: the Read Tape Data step takes data from the tapes and stores it in raw files
on disk, and the Extract and Format Data step uses these raw files to prepare the formatted
data source files used later in the grid build process. Figure 29-2 illustrates the sequence of
operations in data tape processing.

ETMS System Design Document
Version 6.0

29–5

N O A A T a p e s

N F D C M e d i a

A C E S T a p e s

R e a d T a p e
D a t a

E x t r a c t A n d
F o r m a t

D a t a
R a w D a t a F i l e

F o r m a t t e d
D a t a F i l e

F i g u r e 2 9 - 2 . D a t a T a p e P r o c e s s i n g

Figure 29-2. Data Tape Processing

29.1.1 The Read and Convert Data Step

For each tape, the Read Tape Data step uses one or more script files which are invoked by
selecting a particular choice from a menu. The scripts read the unique format of each tape,
translate the contents from EBCDIC to ASCII, and store the data in raw files on the ETMS
network. Each script file contains the appropriate UNIX tape reading command that provides
the blocking information and other switches necessary for generating the desired raw data
file.

For the NOS and NFDC media, a script named tape_read.ksh handles the reading of tapes
into the following data files: airway.raw, miltr.raw, sector.raw, artcc.raw, airport.raw,
navaid.raw, fix.raw,and sua.raw. These data files are for use later in the build process. While
most of these are self-explanatory, miltr is not; it refers to Military Training Routes.
navaid.fmt is not a raw file; it consists of formatted data on the NAVAID media such that a
user can conveniently read the information contained in it.

The ACES tapes are read by invoking a script named read_aces_tapes.ksh. Each ACES tape
(one from each ARTCC) contains many data files, of which only four are used by ETMS for
sector data - arpt.dat, fix.dat, fpa.dat (fpa is an acronym for fix posting area) and node.dat.

29.1.2 The Extract and Format Data Step

The Extract and Format Data step draws the data required for ETMS use from the raw files
and produces formatted source files. Eight compiled programs (airway.bin, miltr.bin,

ETMS System Design Document
Version 6.0

29–6

compress_airports.bin, index_runways.bin, navaid.bin, fix.bin, refmt_airway_raw.bin, and
sua.bin) are used to create the output files based on the NOS/NFDC tape data, and the fcd
program is used to further process the ACES (sector) data. All are described below.

29.1.2.1 The airway.bin Program

The airway.bin program reads the airway.raw disk file and creates the following formatted
data files:

• jet.dat - Continental U.S. jet (high altitude) airways

• victor.dat - Continental U.S. Victor (low altitude) airways

• alaska_jet_routes.dat - Alaskan jet airways

• alaska_victor_routes.dat - Alaskan Victor airways

• bahama_routes.dat - Bahaman airways

• hawaii_victor_routes.dat - Hawaiian Victor airways

• oceanic_routes.dat - oceanic airways; note that the airway tape contains
only selected oceanic airways

• puerto_rico.dat - Puerto Rican airways

• sids.dat - Standard Instrument Departure routes (SIDS)

• stars.dat - Standard Terminal Arrival Routes (STARS)

Airway.bin extracts the data from the raw files by searching for symbols which identify the
type of data that follows (e.g., I01 identifies the beginning of a record). For each type of
data, a special procedure translates the symbolic characters into meaningful information,
which is then inserted into the data file.

In addition to translating the information in the raw data file, airway.bin generates sequence
numbers for each fix along an airway and adds the prefixes BR, RTE, and AR to Bahaman,
Puerto Rican, and Atlantic airways, respectively.

29.1.2.2 The miltr.bin Program

The miltr.bin program reads the Military Training Route (MTR) data that has been stored in
miltr.raw and creates the ifr routes and vfr routes files. This program functions similarly to
airway.bin, searching for different symbols and producing output files (ifr_mtr.dat and
vfr_mtr.dat) with a slightly different format.

29.1.2.3 The compress_airports.bin Program

ETMS System Design Document
Version 6.0

29–7

The compress_airports.bin program reads airport.raw, the raw landing facilities file, extracts
data for identifying the airports and runways, and creates the airport_runway.dat file.. The
file airport.raw contains approximately 100 Mb of data that is organized by records of item
type fields. Each item in airport.raw contains a record type field. If compress_airport.bin
finds that the record type is not APT (airport) or RWY (runway), it does not include that
record in the source data file.

29.1.2.4 The index_runways.bin Program

The index_runways.bin program reads airport_runways.dat and produces the airport.dat
file, which contains approximately 18,000 airports from the NFDC tape and the runway
database, which includes the runway.db.5, runway1.index.5, and runway2.index.5 files.
The ASD utilizes the runway database to display the individual runways.

29.1.2.5 The navaid.bin Program

The navaid.bin program reads the navaid.raw file and uses the sequence number to select
the appropriate data to be included in the navaid.dat, lom.dat, and vot.dat files. Only those
NAVAIDS whose sequence number is 1 are included in the file.

29.1.2.6 The fix.bin Program

The fix.bin program reads the raw airspace fix data stored in fix.raw and then places selected
data in the fix.dat file.

29.1.2.7 The sua.bin Program

The sua.bin program reads SUA data from the sua.raw file, checking each record to
determine the SUA type. The sua.bin program uses the SUA type to sort the data into one of
the following files: alert_area.dat, moa.dat, prohibited_area.dat, restricted_area.dat, and
warning_area.dat.

29.1.2.8 The FCD Programs

The FCD programs process the various files, read off of the ACES tapes from the 20
different ARTCCs, and reformat the data, then combine it all into several files based on
content: aces_etms_airport.dat, aces_etms_fix.dat, and aces_etms_sector.dat.

29.2 Sector Configuration Files

Sector data that is read from the ACES tapes consists of FPAs (fix posting areas) that are
essentially chunks of airspace defined by lat/lon points at the corners and a top and bottom
altitude. The FPAs are identified by a seven-character name and normally are aggregated with
any other FPAs that have the same first five characters into a sector of that name. For

ETMS System Design Document
Version 6.0

29–8

example, there might be two FPAs in the Boston ARTCC labelled as ZBW0801 and
ZBW0802. Under normal grid processing, these two modules would be combined into one
sector named ZBW08. This combining of FPAs into larger sectors allows the ARTCCs to
construct very complex three dimensional sectors out of the simple FPA building blocks.

Sector configuration files are collected from each ARTCC to allow added flexibility in
configuring the ACES FPA data. Each file contains two sections:

• A translation section that allows renaming of FPA modules before the
aggregation process is done.

• A definition section that allows the ARTCCs to control how the sectors are
displayed on the TSD.

29.3 Foreign Data Files

The data tapes and files that have been described so far only contain data about airspace
elements over the CONUS (plus Alaska and Hawaii). Since ETMS is used in Canada and
Europe, we collect files from those sources containing data for airspace elements in their
airspaces. Currently, only Canada is providing these files; London will be providing files soon.

29.3.1 Files collected from Canada:

• airport.dat

• alert.dat

• fixes.dat

• jet_asd.dat

• navaid.dat

• restrict.dat

• rnav.dat

• rnav_asd.dat

• rwy.dat

• tca.dat

• vic_asd.dat

• sector_boundaries.dat (from each FIR)

• track_asd.dat

ETMS System Design Document
Version 6.0

29–9

• nar_asd.dat

• jet.dat

• track.dat

• nar.dat

• vic.dat

29.4 Static Data Files

The data tapes received from NOAA and NFDC (and the foreign files) do not cover all
elements that may be needed for flight plan processing in ETMS. In particular, the following
items which have been observed in flight plans are not present on the tapes:

• Fixes defined locally by each ARTCC

• Military fixes

• International Civil Aviation Organization (ICAO) location identifiers
(four-letter international airport codes)

• Flight Information Regions (FIRs)

• Commonly used fix radials

• Control Areas

• Military SIDs and STARs

• Mexican airways

• North Atlantic Tracking (NAT) Routes and North American Routes (NARs)

Additionally, the following items are on the tapes but are incomplete:

• Military Operations Areas (MOAs)

• Mexican fixes and airports

• Oceanic fixes and airports

• Foreign fixes and airports

• Oceanic airways

29.4.1 Manually Maintained Static Data Files

ETMS System Design Document
Version 6.0

29–10

Work has been under way to find sources for the above mentioned data and to manually
create files which can be used by the ETMS. To facilitate this task, the Parser generates a
fixes_notfound.dat file and a routes_notfound.dat file on a daily basis. These files contain
lists of fixes or flight paths which were encountered during the processing of flight plans, but
which are not in the database. They are occasionally being analyzed at Volpe National
Transportation Systems Center (Volpe Center) with particular attention being paid to items
which occur frequently in flight plans. Whenever possible, data sources for these items have
been found, and the information has been entered by hand into files.

29.4.2 Fix Radial Routes

Routes specified by fix radials are used quite frequently in flight plans. Though the route
processor can dynamically generate the route from a fix radial as it runs, the computation
consumes valuable time. Thus, creating a static file containing most commonly used fix
radials and processing them as structured routes is more efficient.

The starting point in creating such a file is the fix_radial.dat files created each day by the
Parser. These are lists of all the fix radials encountered by the route processor as it parses
flight plans. These files also include the calculated end point of the fix radial, based upon a
standard distance of 350 miles, which represents the practical maximum distance from which
a plane can navigate using a beacon. These files are joined together into aggregates
representing one month each. Sortcount, a sorting and counting script, is run on them, and
the results are saved.

A program called generate_fixradialroutes reads data from these monthly fix radial files and
creates a file called fix_radial_routes.dat. For each unique fix radial encountered, a one-
segment route is generated and saved in this file in the same format as the jet and Victor
airways.

29.5 Files used by the Grid Build Process

After the tape processing has been completed and the static files have been updated, all pre-
grid processing has been completed, and the input files are ready for the grid build process.
The files used as input to the grid build are (grouped by content):

• sector_types.dat (from sector_configuration files)

• pacing_airport.dat (static file listing pacing airports)

• new_monitor.dat (lists of which elements are to be monitored)

• MOA areas from NOAA tape:

o alert_area.dat

o prohibited_area.dat

o restricted_area.dat

ETMS System Design Document
Version 6.0

29–11

o warning_area.dat

• artcc_codes.dat (static file listing single-character codes for ARTCCs)

• canadian.ap.artcc.dat (static file, Canadian airport center)

• ARTCC boundaries:

o artcc_v5.dat (static file, US ARTCC boundaries)

o canadian_artcc.dat (static file, Canadian FIR boundaries)

o zan_artcc.dat (static file, Alaskan ARTCC boundaries)

• Sector Boundary Data:

o aces_etms_sector.dat (from aces tapes)

o zan_high_sector.dat (static file)

o canadian_sector.dat (pick-up from Canada)

o oceanic_sector.dat (pick-up from ARTCCS that have oceanics)

• Jet (high altitude) Route Data

o jet.dat (from NFDC tape)

o alaskan_jet_routes.dat (static file)

• Victor (low altitude) Route Data

o victor.dat (from NFDC tape)

o alaska_victor_routes.dat (static file)

o hawaii_victor_routes.dat (static file)

• Other Route Data

o canadian_troutes.dat (pick-up from Canada)

o cntl_routes.dat (static file)

o puerto_rico.dat (from NFDC tape)

o bahama_routes.dat (from NFDC tape)

o oceanic_routes.dat (from NFDC tape)

• fix_radial_routes.dat (static file, added to based on parser output)

• SIDs and STARs

o sids.dat (from NFDC tape)

o sids.dat (a static file of the same name)

o stars.dat (from NFDC tape)

• Airport Data

ETMS System Design Document
Version 6.0

29–12

o airport.dat (from NOS tape)

o aces_etms_airport.dat (from ACES tapes)

o aces_ap.dat (static airports)

o canadian_ap.dat (pick-up from Canada)

o foreign_airport.dat (static file)

o international_ap.dat (static file of official 4-letter airport names)

o international_guess_ap.dat (static file of unofficial 4-letter airport
names)

o navaid_endpt.dat (static file of some navaids used as end-points of
flight plans.

o mannys_airports (static file of new airports culled from OAG data)

• Adapted Fix Data:

o fix.dat (from NOS tape)

o aces_fix.dat (static file – pre-dates ACES tape processing)

o canadian_fix.dat (pick-up from Canada)

o foreign_fix.dat (static file)

o atlanta_gates.dat (static file)

o ind_gates.dat (static file)

o fir.dat (static file)

• Navaid Fix Data

o Various files from the NOS tape:

- navaid.dat

- non_alpha_nav.dat

- one_letter_nav.dat

- one_char_lit_nav.dat

- two_char_lit_nav.dat

- gt_three_nav.dat

- lom.dat

- non_alpha_lom.dat

- gt_five_lom1.dat

- gt_five_lom2.dat

o aces_nav.dat (static file)

o canadian_nav.dat (pick-up from Canada)

ETMS System Design Document
Version 6.0

29–13

o foreign_navaid.dat (static file)

o aces_lom.dat (static file)

o airport_enroute.dat (static file)

• Files listing MOAs-as-fixes

o aces_moa.dat (static file)

o moa_guess.dat (static file)

• new_arrfix.dat (static file listing all arrival fixes for major airports)

• Files listing departure fixes

o ifcn_dep.dat (static file)

o dep.dat (static file)

• route_aliases.dat (static file)

29.6 The Build Grid Database Process

The Build Grid Database process starts with the running of the gridfront (gr) program,
which generates the menu illustrated in Figure 29-3. Choosing item 1 will invoke the
build_griddb routine, which builds a new version of the grid database. Choosing items 2
through 8 will invoke various testing and querying routines, which are described in Section
29.7. See Figure 29-4.

0 . E X I T

1 . L O A D D A T A
2 . E X A M I N E E L E M E N T S

3 . T E S T F I E L D 1 0 P R O C E S S I N G

4 . T E S T F I X _ O N _ R O U T E F U N C T I O N

5 . D I S P L A Y G R I D E L E M E N T S
6 . L O O K U P E L E M E N T S B Y I D

7 . D U M P D A T A B A S E

8 . E X A M I N E A G R I D C E L L

Q u e r y a n d t e s t i n g f e a t u r e s

F i g u r e 2 9 - 3 . G r i d f r o n t Q u e r y M e n u

Figure 29-3. Gridfront Query Menu

Purpose

The goal of process Build Grid Database is to create a source of static data which can be
accessed by the Parser as efficiently as possible. The various data structures that make up the
database reflect the needs of the route processing module of the Parser. Thus, this section is
best taken as a companion to Section 24, which describes the route processing in detail. A
secondary purpose of this process is to create certain files of fixes and airports for the ASD,

ETMS System Design Document
Version 6.0

29–14

FTM, and Traffic Demands Database Processor. The ETMS functions that use griddb output
files are shown in Figure 29-4.

Fl ight Data
Base Processor

T ra f f i c Demands
Data Base
Processor

elementpairfi leelementnamefile

Parse r
Create E lement

Index F i les

Bui ld Grid
Data Base

Grid Data Base

Arr iva l f i x f i le
Depar ture f ix f i le

N A V A I D f i l e
Se lec ted a i rpor t f i le

codes fi le

full airport fi le

Pacing airport
file

T S D

F T M

Listserver

ID
F i les

F igure 29 - 4 . F u n c t i o n s S e r v e d b y t h e B u i l d G r i d d a t a b a s e P r o c e s s

Figure 29-4. Functions Served by the Build Grid Database Process

Input

• griddb_files.dat and build_files.dat - these contain lists of all the files
(either input or output) that will be used by procedure build_griddb.

• Various pre-grid output files as detailed in earlier sections.

ETMS System Design Document
Version 6.0

29–15

Output

Build Grid Database output files have been designed to fit the needs of the various ETMS
functions. This process provides static data for a number of ETMS functions, as shown in
Figure 29-4. Section 29.6.1 describes files generated for the Parser (the grid database).
Section 29.6.1.1 describes files generated for ETMS functions other than the Parser. Sections
29.6.1.2 to 29.6.1.4 describe diagnostic, internal, and unused output files, respectively.

29.6.1 Grid Database Files

The following files make up the grid database. This is the static data source for the Parser
and route processor.

• hashctr.map, hashsect.map, hashairport.map, hashfix.map, hashr-
seg.map, and hashstruct.map - these are the hash tables for ARTCCs,
sectors, airports, fixes, route segments, and structured routes, respectively.

• elements.map - this file is where pointers to the actual element records are
stored. It is shared by all six hash tables.

• gridcell.map - this file contains fixed length records, which represent the
actual grid structure of 360 by 840 cells.

• gridxtra.map - companion to gridcell.map, which contains all the
variable-length records from the grid.

• alias.map - contains all alias information for the database.

• Artcc.map, sect.map, airport.map, fix.map, arrival.map, rsegs.map,
and struct.map - these files contain the actual fixed length element records
for ARTCCs, sectors, airports, fixes, arrival fixes, route segments, and
structured routes, respectively.

• xtra_artcc.map, xtra_sect.map, xtra_rsegs.map, and xtra_struct.map -
these files contain all the variable-length records for ARTCCs, sectors,
route segments, and structured routes, respectively.

• activetypes.dat - this is a list of element types that have at least one
monitored element in the database.

29.6.1.1 Fix, Airport, and Index Files

The following fix and airport files are generated for the use of the TSD, FTM, and Traffic
Demands Database Processor.

ETMS System Design Document
Version 6.0

29–16

• airport.dat.asd and navaid.dat.asd - lists of all monitored airports and all
monitored NAVAIDs, along with their latitudes and longitudes

• arrival_fix.dat.asd and departure_fix.dat.asd - lists of all arrival fixes and
departure fixes along with their latitudes and longitudes. Some are based
upon arrival fix and departure fix input files and others were derived from
SID and STAR route definitions. These files are renamed arrival_fix.dat
and departure_fix.dat.

• pacing_airport.dat.asd - this is a list of the pacing airports and their
latitudes and longitudes. This file is used as input by three ETMS functions
as follows: It is renamed pacing_airport.dat. It is renamed
airportsend.pacing.dat for the Traffic Demands Database Processor (see
Section 18). Finally, it is renamed pacing.dat for the FTM (see Section 9).

• airport.dat.ftm - this is a very large list (currently numbering over 22,000)
of all airports in the grid database whether monitored or not. Their latitudes
and longitudes are included also. Unlike other files in this section,
airport.dat.ftm includes separate entries for each alias name in the
database; i.e., JFK and KJFK will both be listed. This file is renamed
airstrip.dat and becomes input to the FTM.

NOTE: The data in the above fix and airport files are similar, but not identical, to that in the
data files which are generated from the NFDC tapes (described in Section 29.1). There
are three main differences: The many files of manually entered fixes and airports are
reflected in these files. Fixes and airports which appear only as part of route definitions
are included in these files. Whenever a fix or airport appears both in its appropriate tape
file and in a route definition, the latitude and longitude used will be taken from the latter.
This ensures that when the TSD draws routes, fixes, and airports that are supposed to be
on those routes, they will actually be drawn on the routes.

The following index files are used for propagating monitored elements' unique indexes to the
Flight Database Processor and Traffic Demands Database Processor.

• idunknown.dat, idctrname.dat, idsupersectname.dat,
idhisectname.dat, idlosectname.dat, idairportname.dat,
idadaptedname.dat, idnavaidname.dat, idtpname.dat, idrtxname.dat,
idjet.dat, idvictor.dat, idother_rt.dat, idfixradial_rt.dat, idsid.dat, and
idstar.dat - these are the so-called ID files. They contain lists of names of
monitored elements only. The names are ordered such that the first element
is external index 1, the second is index 2, etc. The files correspond to the
following types: unknown items, ARTCCs, superhigh sectors, high sectors,
low sectors, airports, adapted fixes, NAVAIDs, turning points, route
intersections, jet airways, Victor airways, other airways, fix radial routes,
SIDs, and STARs. These files become input to process Create Element
Index Files, described in Section 29.8.

ETMS System Design Document
Version 6.0

29–17

• indexnamefiles.dat - this file will be input to process Create Element
Index Files, described in Section 29.8. It contains the number of monitored
elements and the ID file name for each subtype.

29.6.1.2 Diagnostic and Informational Files

The following files contain diagnostic information, error or warning messages, or statistics.

• alias.dat - a list of all aliases in the grid database.

• badfix.dat - a list of fixes and airports with malformed names, i.e., those
containing non-alphanumerics such as - and a space.

• badregions.dat - diagnostics resulting from the cleanup of the ARTCC and
sector files that are done by the Build Grid Database process. In particular,
ARTCCs and sectors that are rejected or look suspicious are listed here
with information on the problems found in them.

• badroutes.dat - diagnostics resulting from the cleanup of the route files
that is done by the Build Grid Database process. In particular, routes that
are rejected are listed here with information on the problems found in them.

• idcount.dat - the number of elements of each subtype and with the number
of monitored elements of each type.

• inconsistent_fix.dat - a list of fixes and airports that appeared more than
once in the input data files. Fixes had a distance which varied by more than
0.5 miles. Airports had no distance check.

• overlap.dat - information for which sectors and ARTCCs overlap each
other. This file is an input to a diagnostic program that displays overlapping
sectors and ARTCCs.

29.6.1.3 Internal Files

Each file in this section is created in an early stage of process Build Grid Database (dp
program) and in turn becomes an input to the main body of the process (the data-loading
routines).

• clean_center.dat, clean_sh_sector.dat, clean_hi_sector.dat, and clean_
lo_sector.dat - after badly formed ARTCCs and sectors are removed, all
good data is written to these files. They represent ARTCC, superhigh
sector, high sector, and low sector data, respectively.

• clean_sua.dat - all SUAs are read in and converted to single points, i.e.,
fixes that represent an approximation of their location. This is the resulting
fix file.

ETMS System Design Document
Version 6.0

29–18

• clean_jet.dat, clean_victor.dat, clean_other_rt.dat,
clean_fixradial_rt.dat, clean_sid.dat, and clean_star.dat - after badly
formed routes are removed, all good routes are written to these files. They
represent jet airways, Victor airways, miscellaneous airways, fix radial
routes, SIDs, and STARs, respectively.

29.6.1.4 Unused Files

• idunknown.map, idctr.map, idsuper_sect.map, idhi_sect.map,
idlo_sect.map, idairport_fix.map, idadapt_fix.map, idnav_fix.map,
idsua_fix.map, idtp_fix.map, idrtx_fix.map, idunnamed_fix.map,
idarrival_fix.map, idjet.map, idvictor.map, idother_rt.map,
idfixradial_rt.map, idsid.map, and idstar.map - these ID offset files are
companions to the ID files (Section 29.6.1.18). They contain offsets into
the various element files for each name in the corresponding ID files. These
files correspond to the following types: unknown items, ARTCCs,
superhigh sectors, high sectors, low sectors, airports, adapted fixes,
NAVAIDs, SUAs as fixes, turning points, route intersections, unnamed
fixes, arrival fixes, jet airways, Victor airways, other airways, fix radial
routes, SIDs, and STARs. These files may be needed at some point in the
future.

• idsua_name.dat, idunnamed_fixname.dat, and idarrival_fixname.dat -
these files are similar in format to the ID files described in Section
29.6.1.18, except that process Create Element Index Files does not
currently need them as input. These files correspond to the following types:
SUAs as fixes, unnamed fixes, and arrival fixes.

• fix.dat.asd - this is a file of all monitored adapted fixes with their latitudes
and longitudes. It has no purpose, however, since the TSD does not
currently display adapted fixes.

Processing

As mentioned above, when menu option 1 is chosen, procedure build_griddb is invoked. This
is the main driver for the grid database builder since it invokes all data loading and
manipulation routines. A high-level algorithmic description of build_griddb follows:

(1) Initialize data structures and open files:

(a) Open file name files (see Section 29.6.1.6)

(b) Open files and set up data structures (see Section 29.6.1.7)

(2) Reformat and adjust input data files:

ETMS System Design Document
Version 6.0

29–19

(a) Clean up ARTCC and sector files (see Section
29.6.1.8)

(b) Alter route files for convenience (see Section 29.6.1.9)

(c) Convert SUAs into fixes (see Section 29.6.1.10)

(3) Load from static data files into database:

(a) Load ARTCCs (see Section 29.6.1.11)

(b) Load sectors (see Section 29.6.1.11)

(c) Load airports (see Section 29.6.1.12)

(d) Load fixes (see Section 29.6.1.12)

(e) Load routes (see Section 29.6.1.13)

(f) Load arrival fixes (see Section 29.6.1.14)

(4) Make adjustments in database according to input instructions:

(a) Flag arrival and departure fixes (see Section 29.6.1.17)

(b) Create route aliases (see Section 29.6.1.17)

(c) Adjust sector altitudes (see Section
29.6.1.17)

(d) Process monitor exception lists (see Section 29.6.1.17)

(e) Process arrival fix departure sectors (see Section 29.6.1.17)

(5) Generate TSD, FTM, and ID files (see Section 29.6.1.18)

(6) Close files and do some statistics

NOTE: Several of the sub-steps are order independent. For example, steps 2a, 2b, and 2c may be
rearranged. Similarly, the sub-steps of step 3 may be rearranged with the exception that
airports must be loaded before fixes. (This is due to the structure of build_files.dat.)
Finally, the sub-steps of step 4 are order independent, except that it is probably better to
process monitor exceptions after flagging arrival and departure fixes.

In the following sections, note that most of the data structures and some of the software
described therein are shared with the route processing module of the Parser. Types and
subtypes are discussed first in Section 29.6.1.5. The sections describing the various
sub-processes of build_griddb are noted above. In addition, Section 29.6.1.15 describes
functions enter_fix and enter_airport, which are used by the fix, airport, and route loading
routines, and Section 29.6.1.16 describes alias processing.

ETMS System Design Document
Version 6.0

29–20

29.6.1.5 Types and Subtypes

The grid database and its associated software arrange the various types of objects. There are
two levels of classification. The higher or more general level is implemented using an
enumerated type, element_type. The six types and their ordinals follow:

0 ctr_type ARTCCs
1 sect_type sectors
2 airport_type airports
3 fix_type fixes
4 rseg_type route segments
5 struct_type structured routes, i.e., full routes

The lower level is implemented using an enumerated type, element_subtype . The 18
subtypes and their ordinals follow:

0 unknown unknown elements
1 artcc ARTCCs
2 superhi superhigh sectors
3 hi high sectors
4 lo low sectors
5 airport airports
6 adapted adapted fixes
7 navaid NAVAIDs
8 sua SUAs as fixes
9 turning_pt turning points
10 rt_xing route intersections
11 unnamed_fix unnamed fixes
12 arrfix arrival fixes
13 jet jet airway segments
14 victor victor airway segments
15 other_rt unspecified route segments
16 fixradial_rt fix radial routes
17 sid SID route segments
18 star STAR route segments

Subtypes 2 to 4 comprise sect_type , subtypes 6 to 12 comprise fix_type , and subtypes 13 to
18 comprise rseg_type . The ordinals used for the subtypes are of great importance since
they are used by the Parser to indicate event types in the event lists it generates. In the
context of the grid database builder and the associated route processing code, type usually
means element_type and subtype usually means element_subtype .

29.6.1.6 Open File Name Files

ETMS System Design Document
Version 6.0

29–21

When program gridfront is run, it is invoked with an argument, griddb_files.dat. This file
contains a list of all files that are used by the grid database builder and the route processor.
This includes the names of all files comprising the grid database (Section 29.6.1), in addition
to the ID offset files (Section 29.6.1.1) and testbits.dat (Section 29.6.1.7). Griddb_files.dat
was created because, with the multitude of ever changing input and output files, it was
desirable to avoid hard-coding the file names directly into the source code.

When build_griddb is invoked, it calls function get_filenames to open griddb_files.dat and to
read and save all the file names including one called build_files.dat. This file contains a list of
all files that are used solely by the database builder. This includes all input files (Section
29.6.1.7) and all output files not appearing in griddb_files.dat. Build_files.dat differs slightly
in structure from griddb_files.dat; it consists of two parts:

(1) A list of file names. Function get_buildfilenames is immediately called to open
build_files.dat and read and save all these file names.

(2) Several sets of file names, each set preceded by the number in the set. For
example:

2
 airport_file1
 airport_file2
 3
 adapted_fix_file1
 adapted_fix_file2
 adapted_fix_file3
 .
This arrangement is used so that additional files may be inserted without
requiring any changes to the source code. These are all input file names and are
read in only as the files are required by the program. The software expects the
items to be listed in the following order:

(a) ARTCCs

(b) Superhigh sectors

(c) High sectors

(d) Low sectors

(e) Jet routes

(f) Victor routes

(g) Other routes

(h) Fix radial routes

(i) SIDs

ETMS System Design Document
Version 6.0

29–22

(j) STARs

(k) Airports

(l) Adapted fixes

(m) NAVAIDs

(n) SUAs as fixes

(o) Arrival fixes

(p) Departure fixes

(q) Route aliases

This order is dictated by the order in which build_griddb calls its procedures:
cleanup_sector_and_center_files (1-4), cleanup_route_files (5-10), load_airports (11),
load_fixes (12-14), load_arrival_fixes (15), load_arrival_departure_fixes (16), and
load_route_aliases (17).

ETMS System Design Document
Version 6.0

29–23

29.6.1.7 Open Files and Set Up Data Structures

The following initialization routines open various files and set up the data structures:

NOTE: Generally speaking, when the word pointers is used in the following sections and in any
context in the grid database, it actually means offsets. When one wishes to set up a
pointer to a record, the typical method is to save the offset (into a map file) of that
record instead of the actual address of the record. The record can be found in the future
by adding the offset to the map file starting address which must be saved somewhere else.

• get_testbits - sets the proper test bits. Certain debugging options can be
turned on while building the grid database. One requests such options by
putting the proper keyword in file testbits.dat. Any such keywords in
testbits.dat are encoded into a 2-byte variable called testbits. Each
debugging option uses one bit in testbits. The following option is available
during a database build:

o t_bldoffgrid - this causes a message to be printed whenever a sector
or ARTCC boundary point is off the grid. It uses bit 1 (assuming that
one numbers bits starting with the Least Significant Bit as bit 0).

NOTE: The Route Processor also uses testbits. Most options encoded in testbits are for use
when debugging the Route Processor. See Section 29.7.2 for more information on
testbits.

• init_grid - initializes the grid files. The heart of the grid database is the
so-called grid structure. Picture a rectangular grid overlaid onto the western
half of the northern hemisphere. The grid is 2160 cells wide and 960 high.
Each cell measures 5 minutes (0.083°) on each side, which translates to
about 5 miles at lower latitudes. The area covered by the grid runs from
latitude 10° to 90° N and from longitude 0° to 180° W. When all the data
loading routines (explained in Sections 29.6.1.11 to 29.6.1.14) are finished,
each grid cell contains information about the fixes and airports that lie
within it and the sectors, ARTCCs, and airways that cross through it.

Init_grid creates map files gridcell.map and gridxtra.map. The grid itself
is stored in gridcell.map, which contains the gridcells – fixed-length
records stored in row order. Most grid cell fields are actually pointers to the
fix records, sector records, etc. A grid cell record contains no data, per se.
It indicates only where to find the data for that cell. Figure 29-5 shows
how the grid relates to other data structures. Individual grid cells may
contain more than one airport, fix, or route segment. Thus, these items are
chained together in linked lists; the lists are physically stored in
gridxtra.map.

ETMS System Design Document
Version 6.0

29–24

grid cel l

sec tor

route_segment

A R T C C fix airport
m o d u l e s

sector

s t ruc tured_route

A R T C C

sec to rs
r o u t e s
p laces [a i rpor t_ type]

p laces[f ix_ type]
l o _ m o d u l e b o u n d
h i _ m o d u l e b o u n d
sh_ m o d u l e b o u n d

c e n t e r _ b o u n d a r y

n a m e

ID
moni tor
sector

s t y p e
modu les
nodes
arcs

ce l lcount

n a m e
ID

moni tor
sector
s t y p e
modu les

node (fu tu re)
a rcs (fu tu re)
ce l lcountn a m e

ID
moni tor
center
c t y p e

ce l lcount
pad
cells

n a m e

ID
moni tor
c e n t e r
a t ype

cel lrow
ce l l co l
l a t

long
source
pad

n a m e
ID

e x t _ i n d e x
moni tor
nocel ls

r t ype
e n d r o w
e n d c o l

h e a d _ t y p e
head_ f i x
h e a d
tai l

nxtr te

n a m e

ID
e x t _ i n d e x
moni tor

pad
ta i l_ type
ce l lcount
tail_fix

c e l_ h e a d
c e l_ta i l
s t ruc t_ r o u t e _ h d r

pos i t i on
nxtseg

n a m e

ID
moni tor
ftype
c e n t e r

alt
u s a g e
m a g v a r

cel lrow
ce l l co l
l a t
long

nx t_fix
source
bcn_type

top_al t
bo t_alt

sec to r
nx t_ low_a l t
nx t_hi_al t

top_al t
bo t_alt
sec to r

nx t_ low_a l t
nx t_hi_al t top_al t

bo t_alt
sec to r

nx t_ low_a l t
nx t_hi_al t

route

o the r_ rou tes

route
o the r_ rou tes

n o d e
o t h e r _ n o d e s

arc
o the r_arcs

p l a c e
o ther_p laces

p l a c e
o ther_p laces

p l a c e
o ther_p laces

p l a c e
o ther_p laces

row

c o l

row

c o l

row

c o l

row

c o l

row

c o l

row

c o l

row

c o l

row

c o l

row
c o l

row
c o l

row
c o l

row
c o l

n a m e
top_al t
bo t _alt
cel ls

ce l lcount
nx t_ m o d u l e

s e g m e n t s e g m e n t s e g m e n t s e g m e n t s e g m e n t s e g m e n t s e g m e n t

Figure 29-5. Grid Database

ETMS System Design Document
Version 6.0

29–25

• init_hashtables - creates the various hash files. Because the static database
is very large and is frequently accessed by the Parser, a hashing scheme is
used to minimize access time. There are six hash tables (implemented as
map files), one each for ARTCCs, sectors, airports, fixes, route segments,
and structured routes. An efficient hashing algorithm that minimizes the
number of collisions for this application was developed. The hashing
scheme used is shown in Figure 29-6. The six hash tables share one
common element pool called elements.map. Each record in the element
pool is a pointer to the element's actual record. These files are all created by
init_hashtables.

As an example, assume that airport CMH needs to be hashed. The software
chooses the proper hash table and then performs the hashing calculation
resulting in slot 4 of hashairport.map. The next open spot in
elements.map (slot 4) is found, and a pointer is set up from the hash table
to elements.map. The rec field of elements.map is set to point to the
actual record for CMH located in this case in airport.map. Fixes, sectors,
and other elements hash in a similar way.

Collisions are handled through internal chaining. Assume in Figure 29-6
that airports BOS and BAL result in a collision. Thus, they both will point to
the same slot in elements.map. The rec field of this record points to the
BOS record in airport.map, and its link field (instead of being zero) points
to another slot in elements.map where the pointer to the BAL record is
stored. Any number of collisions may be handled this way, as long as the
last element in the chain has a zero link field.

• init_aliasmap - creates the alias files. In some cases, facilities such as
airports and fixes will have more than one identifier. A common example is
U.S. airports that are used as destinations for international flights. Such
airports have a three-letter FAA identifier along with a four-letter ICAO
identifier, e.g., JFK and KJFK. Such pairs have been termed aliases in the
ETMS system.

init_aliasmap creates the alias map file alias.map along with the diagnostic
text file alias.dat. For an example of how aliasing is implemented, see Figure
29-6. JFK and KJFK hash to different slots in hashairport.map and
elements.map. However, the software determines that they are aliases, and
thus, both rec pointers in elements.map point to the same record in
airport.map. The name field of that record is actually an encoded pointer to
a slot in alias.map, which represents the beginning of a chain of aliases for
that record. The software ensures that the first name in the chain is always
the primary name (JFK in this case).

•

ETMS System Design Document
Version 6.0

29–26

hashctr.map

hashsect.map

hashairport .map

hashfix .map

hashrsegs.map

hashstruct .map

elements.map

airport.map

alias.map

artcc.map

sect.map

fix.map

rsegs.map

struct.map

CMH
BAL
BOS KJFK JFK

0 0 0 0

CHM BOS BAL @200

KJFK

0

JFK

offset
200

Figure 29-6. Hashing Scheme for the Grid Database

Figure 29-6. Hashing Scheme for the Grid Database

ETMS System Design Document
Version 6.0

29–27

• init_monitor_table - reads in the default monitor values. File monitor.dat
contains instructions as to which items should be monitored and which
should not. The file contains general instructions which apply to subtypes
as a whole such as "monitor all high sectors" in addition to instructions for
specific items. Init_monitor_table reads in the general instructions and
stores them in a Boolean array monitor_table. Each slot in the array
corresponds to one of the 19 subtypes (see Section 29.6.1.5). Later, when
the actual data is being loaded (see Sections 29.6.1.11 - 29.6.1.14),
monitor_table is consulted when setting the monitor field of each record.

• init_idtables, init_overlap_file, init_fix_and_ap_files - these routines
create or open the ID files, the overlap file, and the fix and airport files,
respectively.

NOTE: The fix and airport map files are created here, while the ARTCC, sector, route segment,
and structured route map files are created in their respective loading routines. This is
because the fix map file is accessed by the fix -loading routine and the route loading
routine and, thus, should be created before either are called. Similarly, the airport map
file is accessed by the airport loading routine and the route-loading routine and thus,
should be created before either of those are called.

29.6.1.8 The clean_up_sectors_and_centers Routine

Occasionally, sector boundaries have obvious problems, such as extraneous points. A
commonly observed situation is when points defining several similar regions appear under one
sector name. In this case there will typically be a series of points that make up a closed region
followed by many of the same points making up a slightly different region. The sector loading
routines cannot handle such occurrences correctly.

Procedure cleanup_sector_and_center_files is invoked to find undesirable and/or erroneous
features in the sector or ARTCC data. Sector and ARTCC files are read in one at a time. The
points in each region are examined in order to find any of the following problems:

(1) Regions with fewer than three points.

(2) Regions with two or more consecutive, identical points.

(3) Regions with two or more non-consecutive, identical points, excluding cases
where the first and last point are identical.

Errors (1) and (3) are considered fatal in that such regions are eliminated. Error (2) is non-
fatal as the region is retained but a warning is produced. New files are generated containing
sectors and ARTCCs which do not have fatal errors. These are clean_center.dat,
clean_mod_sector.dat, clean_sh_sector.dat, clean_hi_sector.dat, and
clean_lo_sector.dat. Also, a file called badregions.dat is produced listing the deleted regions
and all fatal and non-fatal error messages.

clean_mod_sector.dat contains the FPA data read from the ACES tapes.

ETMS System Design Document
Version 6.0

29–28

ETMS System Design Document
Version 6.0

29–29

29.6.1.9 The cleanup_route_files Routine

Because the route loading procedure (load_routes) is complex, it was desirable to alter (or
pre-process) the incoming route data in order to simplify its task. This work is done by
procedure cleanup_route_files and consists of two major actions:

(1) Load_routes processes routes, one point at a time. However, in some cases, it
needs to know whether the point it is processing is the last one in the route or
not. Rather than adding complex look-ahead code to load_routes,
cleanup_route_files simply adds 1 to the fix code of the last point of each
route. Thus, if the last point had fix code 40 (adapted fix), it would be changed
to 41.

(2) Most routes are specified exclusively by fixes. However, SIDs and STARs
occasionally contain airports. This would normally be no problem, except that
such routes are invariably strange in one of the following ways:

(a) The only point the route contains is the airport. The purpose of such a
SID or STAR is unclear. Such a route is harmless but is certainly of no
use to the database.

(b) The route consists of a sequence of airports. Typically, this is a cluster of
neighboring airports listed in no particular order. No one understands what
this is intended to convey. We cannot allow such a route to be loaded
since it will cause bizarre behavior if accessed later by the Parser.

Since any route containing an airport appears to be useless and/or dangerous,
cleanup_route_files simply deletes all points in routes which are specified by
airports.

The altered routes are placed in new files called clean_jet.dat, clean_victor.dat,
clean_other_rt.dat, clean_fixradial_rt.dat, clean_sids.dat, and clean_stars.dat. Clean-
up_route_files also creates a diagnostic file called badroutes.dat, listing all deleted points.

29.6.1.10 The cleanup_suas Routine

SUAs are currently treated only as fixes. Procedure cleanup_sua_files reduces each SUA
region to a single point (or fix) and saves those fixes in a file called clean_sua.dat. The fix is
derived by averaging the latitudes and then the longitudes of the points making up the
perimeter.

An SUA is often subdivided into two or more regions. An example is Restricted Area R2102,
which is made up of three parts: R2102A, R2102B, and R2102C. The problem is that only the
subregions are listed in the input files. The umbrella names, such as R2102, are not listed,
despite the fact that they are frequently used in flight plans. Cleanup_sua_files therefore
generates fixes for these names by stripping off trailing letters.

ETMS System Design Document
Version 6.0

29–30

NOTE: SUA names in the input files actually include a -, though this is not part of the names as
they are used in flight plans. For example, R2102 is listed as R-2102, W104A is listed as
W-104A, etc. Cleanup_sua_files removes these extraneous hyphens.

29.6.1.11 The load_sectors and load_centers Routines

Procedures load_sectors and load_centers read in sector and ARTCC data, respectively, and
store them in the grid database in a form which is useful for the Route Processor. These two
routines are quite similar, so load_sectors will be described first; differences between this
routine and load_centers will be described afterwards.

Figure 29-7 summarizes the logic behind procedure load_sectors. The input sector data is
read from clean_mod_sector.dat; this contains all the FPA data read from the ACES tapes,
with all the building-block FPAs that are to be combined into three-dimensional sectors.

To start, the very first module (FPA) name is read in. (Any information on the line beyond the
module name is ignored.) If the name is not already in the database, then we create a new
module.

Next, a series of latitude/longitude pairs are read in specifying the shape of the module.
Beginning with the second latitude/longitude pair, function connect_the_dots (Section
29.6.1.11.1) is called to create a chain of grid cells between the new latitude/longitude and the
previous one and to store that chain starting at the next available slot in xtra_sect.map. Field
numcells is set to the number of cells in the chain. Meanwhile, the cells field, as mentioned
above, will point to the beginning of the chain. The function also marks all the grid cells
themselves as being sector boundaries.

When the next module name is reached, it is processed in a similar manner with one
exception. After reading in the new name, work on the previous module must be completed.
First, connect_the_dots is called to close the previous module by connecting its last point with
its first. Then, procedure fill_area (Section 29.6.1.11.2) is called to mark every grid cell
inside the region as being part of that module. After all modules that are part of one sector
are read in, additional record-keeping is done to link the modules into a sector.

ETMS System Design Document
Version 6.0

29–31

Create map files

Open module file

Eof?

Next char.
Is * or .?

Close module file More input
types?

Yes

Yes

Read lat. & long.

Is point off
The grid?

call “connect_the_dots” to
connect previous 2 points

No

Yes

No

call “connect_the_dots”
to close last sector

call “fill_area” to
fill last sector

mark end of map files

No

Read module name

Yes

Already in data
base?

Is this the first
module?

call “connect_the_dots”
to close previous module

call “fill_area” to
fill previous module

create new module record

Yes

Yes

No

No

Figure 29-7. Sequential Logic for load_sectors

Figure 29-7. Sequential Logic for load_sectors

ETMS System Design Document
Version 6.0

29–32

After all processing is complete, a field in the map files sect.map and xtra_sect.map must be
set. It is in the first four bytes of the file and is set to be a pointer to the end of the map file
by procedure mark_mapend.

The only differences when loading ARTCCs instead of sectors are the following:

• The ARTCC file to open is named clean_center.dat.

• There are no altitude fields in the ARTCC records.

• There may be an extra suffix character on the lat./long. lines of the ARTCC
input file, but it is ignored.

Error Conditions and Handling

• If any map files fill up their allocated space, an error message is produced,
and the program aborts.

• Duplicate sector or ARTCC names produce a warning message and are not
loaded.

• Sectors or ARTCCs that have points not on the grid are loaded, and no
error message is produced. Any points off the grid are ignored; a line
segment is created between the last two on-grid points.

29.6.1.11.1 The connect_the_dots Routine

This routine takes the row and column of two grid cells and derives a list of grid cells that
approximate the straight line connecting the two cells. This list is then stored properly in the
grid database, and the number of cells in the chain is returned as the output of the routine.

Connect_the_dots works in two steps:

• First, it invokes function cells_in_line to construct a chain of cell rows and
columns stored as a linked list. Cells_in_line is passed the two given cells
(end points) and returns a pointer to the linked list it creates. If the distance
between the end points is less than approximately 180 nautical miles, it
selects the chain of cells by calculating the slope between the end points to
get a series of row and column coordinates. If the distance exceeds 180
nautical miles, it invokes function greatcircle_connect to determine the row
and column coordinates by calculating the great circle between the end
points.

• Second, it calls function mark_cell for each cell in the linked list.
Mark_cell, in turn, performs two tasks: First, it calls procedure update_cell
to mark the particular grid cell as being part of this sector. Second, it calls
function insert_cel_lst to place the row and column of the cell into the next
available spot in file xtra_sect.map.

ETMS System Design Document
Version 6.0

29–33

NOTE: If both grid cells passed to connect_the_dots are identical, then it will create a chain of
one cell, store it, and return a value of 1

29.6.1.11.2 The fill_area Routine

This procedure is passed the array corners, a list of latitudes and longitudes that form the
perimeter of a given region. It determines which grid cells are within the perimeter and marks
them as being part of the region.

The main work of fill_area is done by a recursive procedure called cluster. For maximum
efficiency, the main processing is done in a separate array instead of in the grid itself. Each
element in this two-dimensional array (called tag) corresponds to a grid cell. Elements in tag
may have one of the following values:

• inner - cell was found by cluster to be inside the region

• outer - cell was found by cluster to be outside the region

• edge - cell is on the boundary of the region

• current - cell is part of a group of cells currently being assembled by
cluster

• unseen - cell has not yet been visited by cluster

Procedure fill_area works as follows:

(1) Mark all tag cells as unseen.

(2) Use corners to mark all boundary cells as edge.

(3) Find an unseen cell. Call procedure inside_area to determine if it is inside or
outside the region. If there are no unseen cells, go to (7).

(4) Call cluster with that unseen cell. Cluster will mark all cells adjacent to the
given cell as current and then call itself to mark all cells adjacent to those cells,
and so on. The recursion stops when an edge cell or the edge of the array is
reached.

(5) Change all current cells to inside or outside as determined by (3).

(6) Go to (3).

(7) For every tag cell marked as inside , set the appropriate field (center,
superhi_sector, hi_sector, or lo_sector) in the corresponding actual grid cell
record in gridcell.map.

NOTE: Due to the limited size of Pascal's internal stack, cluster is written to stop, if there are
more than 5000 recursive calls currently on the stack. The stack is gracefully unwound,
and processing continues with step (5) above. This feature makes it necessary to use the

ETMS System Design Document
Version 6.0

29–34

value current and not simply mark each cell as inside or outside as the procedure
progresses.

29.6.1.12 The load_airports and load_fixes Routines

Procedures load_airports and load_fixes read in airport and fix data, respectively, and store
them in the grid database in a form that is useful for the Route Processor. These two
routines are quite similar, so load_fixes is described first, and any differences between this
process and load_airports are pointed out afterwards.

Load_fixes first opens and processes the newly generated file of SUAs-as-fixes,
clean_sua.dat (see Section 29.6.1.10). Next, it opens and processes each fix file listed in
build_files.dat (see Section 29.6). Processing a file consists of reading in each fix name,
latitude, and longitude and calling function enter_fix to insert the fix into the database. The
only variation occurs if a NAVAID file is being processed; each magnetic variation must be
read in as well. Procedure load_airports is similar, except that it calls a function called
enter_airport to insert each airport into the database.

Most of the work of loading fixes and airports into the database is done by functions enter_fix
and enter_airport. These functions are also called by the route loading routines (see Section
29.6.1.13) to load any fixes or airports that might be extracted from route definitions. Their
descriptions follow in Section 29.6.1.15.

29.6.1.13 The load_routes Routine

Procedure load_routes reads in route definitions and stores them in the database. They are
saved in a complex form that allows the Route Processor to trace them easily and figure out
where a flight joins or leaves the route.

Routes are stored as structured routes (type struct_type) and as a sequence of route
segments (type rsegs_type). A diagram of the route data structures appears in Figure 29-8.
File struct.map contains the main part of the structured route records. Each structured route
record in struct.map points to the records of each route segment that make it up. Since there
can be any number of segments (and thus pointers) per structured route, these pointers are
stored in xtra_struct.map. File rsegs.map contains the main part of the route segment
records (route segments cannot be monitored). Each segment is made up of a chain of grid
cells. Since there can be any number of cells per segment, the actual chains of rows and
columns are stored in xtra_rsegs.map.

Procedure load_routes reads and loads all route definitions into the database. It loads in the six
route files generated by procedure cleanup_route_files (see Section 29.6.1.9). These six files
(clean_jet.dat, clean_victor.dat, clean_other_rt.dat, clean_fixradial_rt.dat, clean_sids.dat, and
clean_stars.dat) represent the six route subtypes. The main task of loading individual routes
from a particular route file falls to two complex procedures invoked by load_routes. These
are load_standard_routes (for subtype jet, victor, other_rt, and fixradial_rt) and
load_sids_stars (for subtypes sid and star). After all processing is complete, a field in each of

ETMS System Design Document
Version 6.0

29–35

the four route map files must be set. It is in the first four bytes of each file, and it is set to be
a pointer to the end of the map file by calling procedure mark_mapend.

ETMS System Design Document
Version 6.0

29–36

Structured Route records (fixed – length data)

Structured Route records (variable – length data)

Route Segment records (fixed – length data)

Route Segment records (variable – length data)

file name:
record name:
^ record:
record size:
map file start address:
maximum size of map file:

struct.map
structured_route
struct_route_ptr
elsize [struct_type]
recstart[struct_type]
maxmapsize [struct _type]

file name:
record name:
^ record:
map file start address:
maximum size of map file:

xtra _struct.map
struct_segment
struct_seg_ptr
xtrastart[struct_type]
maxxtrasize [struct_type]

rsegs.map
route_segment
route_segment_ptr
elsize [rseg_type]
recstart[rseg_type]
maxmapsize [rseg_type]

xtra _rsegs.map
cel_ lst
cel_ lst _ptr
xtrastart[rseg_type]
maxxtrasize [rseg_type]

file name:
record name:
^ record:
map file start address:
maximum size of map file:

file name:
record name:
^ record:
record size:
map file start address:
maximum size of map file:

id

ext_index

monitor

nocells

rtype

endrow

endcol

head

tail

nxtrte

segment

name

id

ext_index

monitor

tail_type

tail_fix

cel_head

cel_tail

cellcount

struct_route_hdr

position

nxtseg

row

col

name V88 J100 J18

victor jet jet
False

J18S1 J18S3J18S2 J18S4

0 0 0 0
False False False False

6

101
251

101
252 252 252 253250

102 103 104100

Figure 29-8. Representation of Route and Route Segments

Figure 29-8. Representation of Route and Route Segments

ETMS System Design Document
Version 6.0

29–37

In the rest of this section, load_standard_routes is described first, followed by some notes on
the differences between it and load_sids_stars.

Routes are specified in the input file as a series of points, i.e., fixes, airports, and other items.
These points are read in one at a time, with the route segment records and structured route
record created step by step. Before creating any records, however, the fix or airport is loaded
into the database by calling either function enter_fix or enter_airport. The following is the
sequential logic for load_standard_routes:

(1) If at end of file, then go to (7).

(2) Read next fix record.

(3) Process the fix appropriately based upon its type. See below.

(4) Build a route segment name of the following form:

 <route name>S<unique number>

 An example is J13S3 which means the third segment of route J13.

(5) Create a route segment record.

(6) If this is the first point on the route, then call connect_the_dots to finish the last
segment of the previous route.

Create a structured route record.
 Go to (1).

(7) If this is not the first point of a route then call connect_the_dots to create a list
of cells connecting this point with the previous one.

Fill in appropriate fields of previous route segment record.
 Go to (1).

(8) Call connect_the_dots to finish the last segment of the last route.

Step (3) above involves processing the various fix types as follows:

•• Fix code 10 (VOR, TACAN, VORTAC, RBN):
Enter the name into the database as navaid

• Fix code 20 (AWY INT):
Build internal name; enter it into the database as rt_xing; if it is not the first
or last point on the route, call link_rowcol to save its latitude/longitude and
go to step (1) above

ETMS System Design Document
Version 6.0

29–38

•• Fix code 30 (WAYPOINT):
Enter the name into the database as adapted

•• Fix code 40 (RPRT PT):
Enter the name into the database as adapted

•• Fix code 50 (COORDN FIX):
If name is five characters, enter it into the database as adapted. If the name
is three characters, enter it into the database as navaid. Otherwise, build an
internal name, issue a warning message, and enter it into the database as
unnamed_fix

•• Fix code 100 (TRNG PT):
Build internal name; enter it into the database as turning_pt

•• Fix code 200 (ARTCC-BDRY):
If the name is not the first or last point on the route, call link_rowcol to
save its latitude/longitude and go to step (1) above; if the name is the first
or last point on the route, then build an internal name and enter it into the
database as unnamed_fix

•• Fix code 300 (MB):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 310 (ENTRY PT):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 320 (ALT ENTRY PT):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 330 (ALT EN/EX PT):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 340 (ALT EXIT PT):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 350 (RE-ENTRY PT):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 360 (EXIT PT):
Build internal name; enter it into the database as unnamed_fix

•• Fix code 400 (end point of fix radial):
Build internal name; enter it into the database as unnamed_fix

ETMS System Design Document
Version 6.0

29–39

Each internal name is constructed as follows. Concatenate a prefix character, a unique
number, the route name, a _, and the point's name, if any. Names longer than ten characters
are truncated. Examples:

• X10J13_J92 - the 10th route intersection created thus far, where route J13
is crossed by route J92

• T20V100 - the 20th turning point created thus far, on route V100

• U5J88_ZAB - the 5th unnamed fix created thus far, called ZAB on route
J88

• W99COL250 - the 99th fix radial end point created thus far, at the end of
route COL250

Generally, each given point specifies the head of the next route segment and the tail of the last
route segment. Each segment must be a straight line. Thus, most fix types encountered signal
the end of a route segment, since the route may bend there. However, fix types AWY INT
and ARTCC-BDRY indicate points where the route cannot bend. Thus, there is no reason to
create a separate route segment at such points. In such cases, the latitude and longitude of the
point is saved by procedure link_rowcol, as mentioned above.

NOTE: These coordinates must be saved, because the function that connects points and
generates lists of grid cells (connect_the_dots) uses a great-circle computation, instead of
calculating a straight line between the points. Thus, one cannot assume that the chain of
cells generated will pass through the given AWY INT or ARTCC-BDRY, unless its
coordinates have been saved.

Function connect_the_dots (see Section 29.6.1.11.1) is called to create the chain of cells that
make up each route segment. Normally, it is called to connect the previous point with the
current one as in step (6b) above. In cases where latitudes and longitudes were saved by
link_rowcol, connect_the_dots is called several times to connect the series of coordinates.
The results are saved as one long chain of cells. The last point on a route will produce a route
segment containing exactly one cell.

NOTE: Consecutive route segments would normally be expected to have one cell in common;
i.e., the tail point of one should be the same as the head point of the other. However,
this would cause problems for the Route Processor as it traces along routes; it would keep
finding pairs of adjacent duplicate cells as it followed from one route segment to the
next. To avoid this problem, load_standard_routes passes a special Boolean flag to
connect_the_dots, which tells the function to drop the first cell of the grid cell chain
that it generates. This removes the duplicate cells.

The fields of the various records are sequentially filled in. For route segments, the monitor
field is always false.

The following error conditions are detected:

ETMS System Design Document
Version 6.0

29–40

• If any map files fill up their allocated space, an error message is produced
and the program aborts.

• Duplicate structured route or route segment names produce a warning
message and are not loaded.

• Unrecognized fix codes produce warning messages.

• Any fixes of type COORDN FIX that do not look like adapted fixes or
NAVAIDs produce warning messages.

Procedure load_sids_stars differs from load_standard_routes in the following ways:

• Each transition of a SID or STAR is stored as a separate structured route.
The name given to each is the overall name of the SID or STAR. Thus, file
struct.map will contain several consecutive records with the same name.
The route processing software knows this and adjusts accordingly.

• The name of the SID or STAR must be extracted from a transition name,
e.g., SID name DILO3 must be extracted from transition DILO3.ALTAM.

• Departure fixes are derived from each SID and STAR definition. In such
cases, when calling enter_fix or enter_airport, the monitor flag is set to
true, and the usage variable is set to depart (see Section 29.6.1.15).

• Certain points on SIDs and STARs are considered interesting by the FAA,
i.e., fixes at those points should be monitored. To monitor these fixes, a
value of true is passed to function enter_fix or enter_airport through the
monitor flag (see Section 29.6.1.15).

• Fields endrow and endcol in file struct.map are set to the row and column
of the last cell on the transition. (Procedure load_standard_routes does not
use them at all.)

• The set of possible fix types is different. Fix code 400 cannot occur. In
addition, the following are additional fix types that only occur with SIDs
and STARs, along with the actions that they trigger:

o fix code 5 (AIRPORT):
Enter the name into the database as airport

o fix code 60 (DME FIX):
Build internal name; enter it into the database as turning_pt

o fix code 70 (BRG INT):
Build internal name; enter it into the database as turning_pt

ETMS System Design Document
Version 6.0

29–41

o fix code 80 (ILS):
Strip off the first two characters ("I "); enter the name into the
database as navaid;

o fix code 90 (TRANS INT):
Build internal name; enter it into the database as unnamed_fix

29.6.1.14 The load_arrival_fix Routine

Procedure load_arrival_fix reads in airports, arrival fixes, and keywords indicating if the
arrival fix is used by jets, props, or both. The information is stored in the grid database in a
form that is useful for the Route Processor.

Load_arrival_fix opens and processes each arrival fix file listed in build_files.dat (see
Section Section 29.6). Each arrival fix is associated with an airport. Processing the file
consists of reading the contents and loading the information into the arrival fix map file. For
an arrival fix to be accepted, it must already be stored in the grid database as a NAVAID or
adapted fix. If a fix is found, it is duplicated and marked as an arrival fix. The monitor flag is
set to false, and the usage variable is set to arrive. If one is not found, it is listed at the
conclusion of the build procedure as a warning

29.6.1.15 The enter_fix and enter_airport Routines

Purpose

Functions enter_fix and enter_airport insert one fix or airport into the database. In addition,
they do a number of diagnostic checks.

Input

Enter_fix and enter_airport receive the following types of input:

• Fix or airport name

• Latitude and longitude (radians) of the fix or airport

• Type of data file from which this fix or airport was read (struct_type,
fix_type, or airport_type)

• Flag which is set to true if the fix or airport should be monitored (A value
of false indicates that whatever default was read in by monitor.dat should
be used.)

Enter_fix receives the following additional types of input:

• Subtype of the fix

• Usage type of the fix

ETMS System Design Document
Version 6.0

29–42

o arrive - arrival fix

o depart - departure fix

o ns - no special usage

•• Magnetic variation of the fix. This is zero except when the subtype is
navaid.

• Name of the file from which this fix was read

Output

If successful, enter_fix and enter_airport return the offset into fix.map or airport.map of
the new record. If a failure occurs, constant noentry (zero) is returned.

Processing

As the two routines are quite similar, enter_fix is described first, and notes on how
enter_airport varies follow. A flowchart for enter_fix appears in Figure 29-9. Enter_fix first
checks to see if the fix name is badly formed, i.e., whether it contains non-alphanumeric
characters. If so, a message is placed in file badfix.dat and processing continues, except
when the name is all blank, in which case enter_fix exits immediately. Next, the name is
looked up in the database.

If the fix name exists, then some information in the current record for that fix is adjusted. In
particular, the following steps are taken:

• If this is an arrival or departure fix, then the usage field is set appropriately.

• If the monitor flag is true and the fix is on the grid, then the monitor field
is set to true.

• If the magvar field of the current record is zero, then the new magnetic
variation is stored in magvar.

• If the source file type is struct_type , then the current record's lat, long,
cellrow, and cellcol fields are replaced with the new values. This means
that latitudes and longitudes that come from route files have priority. This is
done to ensure that fixes that are part of routes are listed in the database as
lying exactly on those routes.

• If the distance between the current and new fix differs by more than 0.5
miles, a message is written to file inconsistent_fix.dat. This is one way to
detect ambiguous fix names, i.e., names that represent two or more widely
separated locations or facilities. There is no distance check associated with
ambiguous airport names; all occurrences are written to this file.

ETMS System Design Document
Version 6.0

29–43

If the name does not exist, then function alias is called to determine whether the fix is an alias
to some fix already in the database. If it is, then procedure insert_alias is called to place the
new name into the alias chain for this particular fix's record (see Figure 29-5.) Insert_alias
also ensures that the primary name of the fix (if one can be determined) appears first in the
alias chain. See Section 29.6.1.16 for a discussion of the alias routines. If the fix is not an
alias, then a new fix record must be created in the next available slot in fix.map. The input
described in this subsection is used to fill most of the various fields. The monitor field is set
as follows:

• If the fix is off the grid, monitor is set to false.

• If the fix is on the grid and the monitor flag is true, monitor is set to true.

• If the fix is on the grid, and the monitor flag is false, monitor is given a
value based upon array monitor_table (created by procedure
init_monitor_table; see Section 29.6.1.7).

•

ETMS System Design Document
Version 6.0

29–44

I f this is a badly formed
f ix name, wr i te message

to “ bad i f x.dat ”

Create and fi l l a new
fix record

If fix is on the grid, call
“update_cell” to adjust

the grid

Is name a l ready
in database?

Is this name an
alias?

Return

Call “insert_alias”
to save it in the alias file

I f name came f rom a
route file, replace the

current lat/ long

If the new lat/long differs
from the current one,
write message to f i le
“inconsistent_fix. dat”

Reset usage, monitor bi t ,
& m a g. var. if necessary

Y e s

N o

Y e s

N o

Figure 29 -9 . S e q u e n t i a l L o g i c f o r enter_f ix

Figure 29-9. Sequential Logic for enter_fix

Finally, procedure update_cell is called to insert a pointer to this fix record in the grid itself.

Enter_airport differs from enter_fix only in that there are no references to usage types or
magnetic variation, since these terms do not apply to airports.

NOTE: Though attempts are generally made to distinguish between airports and fixes in the
naming conventions, occasionally both are lumped together under the name fix.
Examples are the files badfix.dat and inconsistent_fix.dat, which can contain both
airports and fixes.

ETMS System Design Document
Version 6.0

29–45

Error Conditions and Handling

• If any map files fill up their allocated space, an error message is produced
and the program aborts.

• Blank fix names are not loaded; a warning message is written to file
badfix.dat.

• Badly formed fix names are loaded; a warning message is written to file
badfix.dat also.

• Duplicate fix names are not loaded; they produce a message in file
inconsistent_fix.dat only if they have latitudes and/or longitudes that differ
significantly from each other.

29.6.1.16 The alias Routine

Certain airports and fixes have more than one identifier. One common example is airports that
are used as destinations for international flights. Such airports will have a three-letter FAA and
along with a four-letter ICAO identifier, e.g., JFK and KJFK. (Similarly, for Canadian
airports the ICAO identifier begins with a C, and other foreign airports start with different
letters based on the part of the world the airport is located). Any such identifiers are stored in
the ETMS system as aliases.

Function alias determines whether a given name is an alias to any item already in the
database. It receives a fix or airport identifier along with its latitude, longitude, and subtype.
Only subtypes airport, adapted, and navaid may have aliases as far as function alias is
concerned. It determines aliases in three ways:

• It examines the name to find ICAO-type aliases if the subtype is airport. In
particular, if the name is three letters, then alias checks to see if that name
preceded by any of the following letters A-H, K-P, R-W, or Z exists in the
database. If so, and it is within 0.75 degrees, then we have an alias. On the
other hand, if the name is four letters and the first letter is any one of the
following A-H, K-P, R-W, or Z, alias looks up the name defined by the
three letters following the K or C. If it is found, and it is within 0.75
degrees, then an alias exists.

• There is another special case where names are examined to determine
aliases if the subtype is airport. If the name is four letters and begins with
an M, then alias checks if that name's last three letters are found in the
database preceded by a T. If so, and it is within 0.75°, then an alias exists.
This occurs for airports in the Caribbean and Mexico. It is caused by
outdated OAG airport names. On the other hand, if the name is four letters
and the first letter is a T, alias looks up the name defined by the last three

ETMS System Design Document
Version 6.0

29–46

letters preceded by an M. If it is found, and it is within 0.75°, then an alias
exists.

• It checks to see if there are any items very close to the given latitude and
longitude if the subtype is an adapted or navaid. This is done by checking
other items in the grid cell where the given identifier belongs. If there is an
item of the same type and it is within 0.01° of the given identifier, then an
alias exists. This is not a perfect check in that two items could conceivably
be less than 0.01° apart but lie in separate grid cells.

If an alias is found, alias returns a value of true along with the offset of the record to which
the given identifier is an alias.

Once it is determined that an alias exists, procedure insert_alias must be called to place it in
the database. Insert_alias adds the identifier to the alias chain of the given record (see Figure
29-6). In doing so, it tries to make sure that the first item in the chain is the primary name for
the item. Function goodname is invoked to decide whether the new name or the existing name
is to be the primary name. The current ad hoc criteria are that the primary name must be
exactly three letters or five letters long. Otherwise, a primary name is assigned at random.

NOTE: Unlike function alias, procedure insert_alias knows that structured routes can have
aliases, since it is also invoked by procedure load_route_aliases (Section 29.6.1.17).
Function goodname has one criterion for primary names of structured routes: Jet
airways (i.e., those beginning with a J) are primary names.

29.6.1.17 Adjusting the Database According to User Instructions

Once all the data have been loaded, certain adjustments are made in the database. They
involve alterations dictated by specific user requests. In each case, one or more manually
created input files are read in, and the database is changed, based upon the contents of the
file(s).

• Flagging additional arrival and departure fixes - In addition to the
arrival and departure fixes which are derived from SIDs and STARs by
procedure load_routes (see Section 29.6.1.13), some have been obtained
from other sources and must be loaded into the database.

Procedure load_arrival_departure_fixes opens a series of arrival and
departure fix files. It looks each fix up in the database and sets its usage
field accordingly. If the fix is on the grid, then the value in its monitor field
is set to true. If the fix is not in the database, a warning message is
produced.

• Creating route aliases - U.S high altitude (jet or J) routes frequently
cross into Canadian airspace where they become HL routes. For example,
J500 becomes HL500 when it crosses from Maine into Quebec. Names
such as J500 and HL500 seem to be used interchangeably in flight plans,

ETMS System Design Document
Version 6.0

29–47

regardless of which side of the border one is flying on. Thus, it became
necessary to equate such names in the grid database as aliases.

Procedure load_route_aliases reads pairs of route names that must be
aliased. The first name in each pair is the U.S. route name, and the second
is the Canadian route name. It looks up the U.S. name in the database and
then calls procedure insert_alias, passing it the Canadian route name and
the U.S. route's offset. See Section 29.6.1.16 for more about aliases and
insert_alias.

• Processing monitor exception lists - Each item in the database was given
the default monitor setting (true or false) for its subtype as listed in file
monitor.dat and read in by procedure init_monitor_table (see Section
29.6.1.7). Some items may be exceptions to the given default settings.

Procedure do_monitor_exceptions re-opens file monitor.dat and processes
any lists of monitor exceptions. There are two keywords relating to
exceptions that may appear in the file: all_except and none_except . The
latter indicates that the following items are to be monitored even though
most items of that subtype are not. The former indicates that the following
items are not to be monitored even though most items of that subtype are.
This procedure reads in the name of each exception, looks it up in the
database, and sets its monitor field appropriately. If the item is not in the
database, a warning is issued.

29.6.1.18 Generate TSD, FTM, and ID files

The record for every item in the database has two fields (id and ext_index) that are not filled
by any of the loading routines (see Sections 29.6.1.11 to 29.6.1.14). These fields contain the
database's internal and external indexes respectively. (Sometimes the term ID is used in place
of index.) Internal indexes are only used within the grid database and its associated software.
All items in the database have an internal index. External indexes are shared with other
functions, in particular, the Flight Database Processor and Traffic Demands Database
Processor. Any information about static data items that must be shared among the Parser,
Flight Database Processor, and Traffic Demands Database Processor is transmitted using
external indexes. In the context of the Flight Database Processor and Traffic Demands
Database Processor, an external index is known simply as an index. Only monitored items
have an external index. This implies that only monitored items can be recognized by other
functions in the ETMS.

NOTE: Internal indexes are generated, but not currently used, by the grid database software.

Indexes are generated by procedure create_ids. This procedure traverses the six record files
(artcc.map, sect.map, airport.map, fix.map, rsegs.map, and struct.map) and assigns to
each record unique internal and external index numbers. Elements of each subtype are
numbered separately in ascending order starting with 1. As create_ids generates indexes, it

ETMS System Design Document
Version 6.0

29–48

creates the so-called ID and ID offset files. There are twelve files of each type (one for every
subtype except unknown and the route segment subtypes). Each ID file contains a list of the
names of all monitored elements of that subtype in ascending order of external index. They
become input to process Create Element Index Files, which uses them to generate index files
for the Flight Database Processor and Traffic Demands Database Processor (see Figure
29-4). Each ID offset file contains the offset into the appropriate map file of each of the
names in the corresponding ID file.

NOTE: The ID offset files are not currently used.

Create_ids also generates a number of files for various ETMS functions as it traverses the
record files:

• airport.dat.asd - a file of all monitored airports

• airport.dat.ftm - a file of all airports including airport aliases

• navaid.dat.asd - a file of all monitored NAVAIDs

• arrival_fix.dat.asd - a file of all monitored arrival fixes (i.e., all arrival
fixes)

• departure_fix.dat.asd - a file of all monitored departure fixes (i.e., all
departure fixes)

Each file contains a name, a latitude, and a longitude and ensures that all ETMS functions
have consistent, up-to-date data. Finally, create_ids generates a file called activetypes.dat for
the route processor which simply contains a list of all subtypes that have at least one
monitored item.

Similar to create_ids, procedure generate_pacing_airports generates a file of pacing airports
for use by other ETMS functions. It opens file pacing_airport.dat, reads in the pacing
airport names, retrieves their latitudes and longitudes from the database, and writes them to
file pacing_airport.dat.asd. If a name cannot be found in the database, then a warning
message is produced.

29.7 Grid Database Query and Testing Features

In order to ensure that the grid database has been properly constructed, a number of
routines have been developed to allow one to query it or test certain route processing
software. These procedures are all invoked by program gridfront. It displays a menu
(illustrated in Figure 29-3) from which one can choose either to build a new database or run
one of the query/testing features. When any of these features is invoked, the first step is to
map the grid database into memory and then prompt the user for specific requests. Query
features are described in Section 29.7.1, and the route processing test features are discussed
in Section 29.7.2.

ETMS System Design Document
Version 6.0

29–49

29.7.1 Querying the Database

There are five different ways of querying the database. They are invoked through the choice
of one of the following options in the gridfront menu:

(1) Examine elements - This option is used to request information on specific
elements in the database. Choosing this option causes procedure get_els to be
invoked. It, in turn, calls one or more of the following procedures, which
retrieve a particular type of information from the database: get_center,
get_sector, get_airport, get_fix_el, get_rseg, and get_struct_route. Each
procedure looks up the given element name and writes information about it to
file get.out. Get_els keeps prompting the user for more names until the user
presses the return key. If the given element is not in the database, a message
is printed. If get.out is busy, a message is printed, and the program exits.

(2) Display grid elements - When working with ARTCCs or sectors, it is useful
to see pictures of the shape of the region. A procedure called display_grid
draws a picture of a region on the screen. It is invoked through this menu
option.

(3) Lookup elements by ID - People who work with event lists typically have the
index of an element but may require other information. Choosing this option
invokes procedure lookup_id, which allows one to get information on an
element by giving its index and subtype. Less common is the case where one
has the offset of an element but not its name. If necessary lookup_id can look
up elements by offset and subtype.

(4) Dump database - Groups of elements can be dumped to a file, when specified
by particular subtypes or groups of subtypes. Choosing this option causes
procedure dump_database to be invoked. It prompts the user to find out what
subtypes to dump and then traverses the appropriate record files dumping all
requested elements to file dump.out. If dump.out is busy, a message is
printed, and the program exits.

(5) Examine a grid cell - Choosing this option invokes procedure dump_gridcell,
which opens up a specific grid cell and dumps its contents to the screen.
Dump_gridcell first prompts the user for a row and column or a latitude and
longitude. It then displays any fixes and airports it contains, any structured
routes and route segments which pass through it, and any sectors or ARTCCs
that lie all or partially within it. If the given point or row/column is off the grid,
a warning message is produced. Dump_gridcell will dump as many cells as the
user wishes.

NOTE: Due to an apparent bug in the Pascal open command, if get.out or dump.out is busy, the
program does not always detect it and it crashes instead.

ETMS System Design Document
Version 6.0

29–50

29.7.2 Testing Route Processing Software

There are two features of the route processing software that may be tested. Such tests are
invoked through one of the following options in the gridfront menu:

• Test field 10 processing - This routine can be used extensively to test
certain features of the Route Processor without using live data as input. It
relies on the existence of a file called routes found in the local directory,
which should contain the whole NAS message or just the field 10 part of
FZs, UZs, or AFs that need to be tested. (It can also contain comment
lines, preceded by an exclamation point.)

• Test fix_on_route function - This routine is useful in debugging for
determining how close to a specified fix a specified route is located. It
prompts the user for keyboard input of a fix name, a route name, and a
number to specify how far around the fix to look. This number indicates
the number of grid cells in each direction, around the grid cell the fix is
found in, that will be checked to see if the route passes through. The
routine fix_on_route is the same one used by the route processor to bend a
route. If the route is found within the specified perimeters, the output
written to the screen shows a filled in fix record for either the initial fix
entered (if the route is in the same grid cell as that fix) or for an unnamed
fix in the center of the grid cell (where the route is first located). The layer,
(i.e., the number of cells away from the initial fix) is also displayed.

29.8 The Create Element Index Files Process

After process Build Grid Database is run, the ID files it creates are passed to process Create
Element Index Files, which translates them into forms useful to the Traffic Demands
Database Processor and Flight Database Processor.

Purpose

The post-processors create two index files that allow the Flight Database Processor and
Traffic Demands Database Processor to retrieve names of elements for the indexes they find
in event lists generated by the Parser. These two files are necessary, because the Flight
Database Processor and Traffic Demands Database Processor do not have access to the grid
database itself.

NOTE: The post -processors were separated from the database builder program so that the
Apollo sorting command srf could be used to sort the files more efficiently.

Input

• idctrname.dat, idsupersectname.dat, idhisectname.dat,
idlosectname.dat, idairportname.dat, idadaptedname.dat,

ETMS System Design Document
Version 6.0

29–51

idnavidname.dat, idsua_name.dat, idtpname.dat, idrtxname.dat,
idunnamed_fixname.dat, idarrival_fixname.dat, idjet.dat, idvictor.dat,
idother_rt.dat, idfixradial_rt.dat, idsid.dat, and idstar.dat - these are the
so-called ID files which contain lists of element names. The names are
ordered such that the first element is external index 1, the second is index
2, etc. The files correspond to the following subtypes: ARTCCs, superhigh
sectors, high sectors, low sectors, airports, adapted fixes, NAVAIDs,
SUAs, turning points, route intersections, unnamed fixes, arrival fixes, jet
airways, victor airways, other airways, fix radial routes, SIDs, and STARs,
respectively.

• indexnamefiles.dat - a file containing the number of monitored elements
of each subtype and the ID file names for each subtype.

Output

• elementnamefile - contains lists of all elements separated into subtypes.
Each list is ordered by external indexes and followed by a count, indicating
how many elements of that type exist. A particular list and number
accesses the corresponding element. A particular element (e.g. NORCH, an
adapted fix) may occur two or more times in the list.

• elementpairfile - contains lists of all items divided into subtypes. Each
element in a list is associated with a number which is its external index.
Each list is followed by a count, indicating how many elements of that type
exist. A unique external index is accessed by providing a list number (one
through 18) and the element name.

• idctr.dat.s, idsuper_sect.dat.s, idhi_sect.dat.s, idlo_sect.dat.s,
idairport_fix.dat.s, idadapt_fix.dat.s, idnav_fix.dat.s, idtp_fix.dat.s, and
idrtx_fix.dat.s - these sorted ID files contain the names from the
corresponding ID files in alphabetical order. Each name is associated with a
number (its external index) which indicates its position in the ID file. The
files correspond to the following subtypes: ARTCCs, superhigh sectors,
high sectors, low sectors, airports, adapted fixes, NAVAIDs, turning
points, and route intersections, respectively.

NOTE: If there are no monitored elements of a particular subtype (i.e., the ID file is empty),
then no sorted ID file is generated for that subtype.

Processing

Process Create Element Index Files consists of three modules:

• Program loadelementnames -reads in the ID files and counts and creates
file elementnamefile . It opens one ID file after another, writing all the

ETMS System Design Document
Version 6.0

29–52

names and then the count to elementnamefile . If any file listed in
indexnamefiles.dat does not exist or if indexnamefiles.dat itself does not
exist, a warning message is produced.

• Script convertnamestoindexes.sh - reads in the ID files and counts and
creates the sorted ID files which are to be used by loadelementindexes. It
opens one ID file after another, writing each item's name and its position
(the same as its external index) to a file. It then sorts each file, using the
Apollo shell command srf.

• Program loadelementindexes - This module reads in the sorted ID files
created by convertnamestoindexes.sh and creates file elementpairfile . It
opens one sorted ID file after another, writing all the name/index pairs and
then the count to elementpairfile . If the .s version of any file listed in
indexnamefiles.dat does not exist, or if indexnamefiles.dat itself does
not exist, a warning message is produced.

NOTE: Convertnamestoindexes.sh must be run before loadelementindexes; otherwise, these
modules are order-independent.

29.9 The Codes File

The ETMS Listserver process is responsible for handling user requests for air traffic demands
for the monitored elements in the griddb. To facilitate this, one of the outputs of the grid build
is an ASCII text file that includes all the names of the monitored elements (sectors, fixes,
airports) in the current griddb. This file is updated every 56-day build cycle to keep the
listserver current.

29.10 Aircraft Situation Display Pre-processors

29.10.1 The Create Airway Index Files Process

The ASD requires its route data to be in a particular form for easy access. Process Create
Airway Index Files consists of two programs which must be run to generate the airway index
files for the ASD.

29.10.1.1 The refmt_airway_raw Program

Input

The input to this program is the airway.raw file, found in the current working directory.

ETMS System Design Document
Version 6.0

29–53

Output

The output from this program is the airway.dat, stored in the current working directory.

Processing

This program is conceptually a re-formatting pipeline program. The input consists of a series
of command codes, followed by data. The output consists of strings of geographic points,
expressed in terms of latitude/longitude together with the name and type of geographic point.
The types are as follows: airports, NAVAIDs, jurisdictional boundary crossings, intersections
with other airways, and named fixes.

29.10.1.2 The build_airway_db Program

Input

The input to this program is the airway.dat file, found in the current working directory.

Output

The output from this program consists of two files, airway.db and airway.index, which are
created in the current working directory.

ETMS System Design Document
Version 6.0

29–54

Processing

The program reads airway.dat, in ASCII, converts the latitude and longitude data into Albers
Equal Area Projection coordinates, and writes each point out to airway.db. As it writes the
first record of each airway onto airway.db, it writes a pointer to that record onto
airway.index.

